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Abstract. We present a model for the superconducting states of UPt, in which a two- 
dimensional order parameter couples to a field that breaks the hexagonal symmetry of the 
crystal. This symmetry-breaking field (SBF) splits the superconducting transition, leading to 
two superconducting phases in zero field. The high-temperature superconducting phase 
exhibits the broken hexagonal symmetry of the SBF, while the low-temperature phase 
spontaneously breaks time-reversal symmetry. We calculate the specific heat jumps at both 
transitions and compare with the recent measurements by Fisher et al.  We find that sizeable 
strong-coupling corrections are needed to explain the magnitudes of the heat capacity jumps 
and the splitting of the transition. We show that a kink in the upper critical field occurs for 
fields in the basal plane. Comparison of the discontinuity in the slope of Hc2( T )  with the data 
of Taillefer eta1 (on a different UPt, crystal) is in qualitative agreement with the heat capacity 
data. We also predict a change in slope of H,,(T) at the temperature of the second peak in 
the heat capacity, for all field orientations. Observation of all three features in the same 
single crystal would provide convincing evidence for unconventional pairing in UPt, and 
would be a stringent test of the model presented here. 

Recent specific heat measurements [l] show that the broad transition to the super- 
conducting state in UPt, at T, = 0.5 K is actually two transitions separated by AT, = 
60 mK. The authors argue that the splitting of the transition is an intrinsic property of 
UPt,. In this article we present a Ginzburg-Landau (GL) theory of the superconducting 
states of UPt, based on the coupling of an unconventional order parameter to a small 
symmetry-breaking field (SBF) which lowers the symmetry of the normal metallic state. 

It is known that the order parameter for systems exhibiting broken symmetry can be 
sensitive to weak perturbations that reduce the symmetry of the normalstate. Superfluid 
,He is a good example. The dipolar interaction between 3He nuclei is small, of order 
lo-’ K, compared with the superfluid transition temperature T, = lo-, K. Thus for most 
purposes the dipole energy can be neglected and the normal state of liquid ,He can be 
considered to be separately invariant under rotations in either spin or coordinate space. 
The 3D Balian-Werthamer (BW) state-identified with the B phase of superfluid ,He- 
is the ground state in weak-coupling BCS theory for an isotropic Fermi liquid with p-wave 
pairing and separate spin and orbital rotational symmetry of the normal phase. The 
weak dipole-dipole interaction in ,He breaks relative spin and orbit rotational symmetry, 
and gives rise to the longitudinal NMR frequency in the B phase. What is less well known 
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is that the dipolar interaction also gives rise to a splitting of the phase transition. The 
initial transition to the superfluid state corresponds to condensation into the 2D planar 
phase [2, 31. At  a slightly lower temperature a second transition takes place to a 3~ 
superfluid state. Well below the second transition the order parameter is essentially that 
of the 3D BW state, albeit without the continuous degeneracy associated with relative 
rotations of the spin and orbital components of the order parameter. This splitting of 
the transition has not yet been observed in 3He simply because the magnitude of the 
splitting is very small, AT,  - 0.1 ,uK [3]; however, there is little doubt that the splitting 
occurs. 

An analogous effect explains the splitting of the phase transition in UPt,; (i) a small 
symmetry-breaking term in the normal-state Hamiltonian leads to a small splitting of 
the superfluid transition for unconventional pairing, (ii) the dimensionality of the order 
parameter is lower at the first transition compared to the order parameter at the second 
transition, and (iii) the order parameter well below the second transition is essentially 
that of the unperturbed superfluid, except that the continuous rotational degeneracy 
that is present in the absence of the perturbation is eliminated. We also predict the 
existence of anomalies in the temperature dependence of the upper and lower critical 
field of UPt, which are a test of this theory. 

UPt, is a hexagonal crystal with inversion symmetry; thus the full symmetry group 
of the normal state is G = U(l) X T X D6,(U(1) is the gauge group, Tis  time-reversal, 
and D,, is the point group). The transition to a conventional superconducting state 
breaks only gauge symmetry. An unconventional superconducting state breaks 
additional symmetries and is described by an order parameter that transforms according 
to a non-trivial irreducible representation of G. Any perturbation that reduces the 
dimensionality of the representation corresponding to the highest transition temperature 
can have an important effect on the superconducting transition. 

We introduce a SBF which couples to the superconducting order parameter belonging 
to a nontrivial representation of the hexagonal symmetry group. Our results depend on 
symmetry arguments and general features of mean-field theory for a second-order phase 
transition and are not particularly sensitive to the origin of the SBF; however, two 
possibilities are obvious. Ozaki [4], Sigrist, Joynt and Rice [5] and Volovik [6] consider 
the coupling of the superconducting order parameter to lattice distortions. The latter 
authors show that the coupling to a lattice distortion can lead to a transition from 
one superconducting state to another in crystals with cubic, tetragonal or hexagonal 
symmetry, and calculate the specific heat jumps for the transitions. Secondly, recent 
neutron scattering measurements [7] indicate that UPt, has weak antiferromagnetic 
(AFM) order in the ab plane. The AFM order parameter (the SBF in this case) breaks the 
hexagonal symmetry and, if the pairing interaction is mediated by AFM spin fluctuations, 
leads to a different pairing interaction for the two different basis functions that span the 
ZD El representation. (Joynt [8] mentions this possibility for UPt,.) More precisely if 
the most attractive channel for pairing is the even-parity E,, representation, the pairing 
interaction in the absence of the AFM order is of the form 

V E l ( k F ,  k k )  = VE1[6(kF)6(kk) + E(kF)E(kk)l (1) 

the effect of the SBF is then to lift the degeneracy of the two basis functions, thus lowering 
the symmetry from D6 to D,, 

v ( k F ,  kk) = V f i f i ( k F ) o ( k k )  + vCE(kF)6(kk) 

= VEl(kF, k k )  + vc[flkF)o(kk) - E(kF)E(kk)l ( 2 )  
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with 2V, = (V,  - V:) e VE,.-t 
We show that the coupling of a SBF to the order parameter in crystals with hexagonal 

symmetry has further experimentally verifiable consequences$. The axial symmetry of 
Hc2( T )  in the basal plane is broken and a kink appears in Hc2( T )  at a temperature T,, 
which depends on the strength of the SBF coupling and the stiffness coefficients appearing 
in the GL free energy. The splitting of the phase transition induced by the SBF leads to a 
strongly anisotropic superfluid density tensor in the ab plane, as well as a change in slope 
of the lower criticalfield H,,(T) at Tc*, the temperature corresponding to the second 
specific-heat jump. 

In addition to the splitting of the transition in zero field, a peak is observed in the 
ultrasound attenuation [13-151 as a function of field, suggesting that a phase transition 
takes place between superconducting states of different symmetry [16]. These obser- 
vations are strong evidence that the superconducting states of UPt, are described by 
an unconventional order parameter. Group theoretical analysis [ 171 shows that the 
multidimensional order parameters in a hexagonal crystal contain two complex ampli- 
tudes which transform either like the E, or the E2 representation§. Putikka and Joynt 
[9] proposed a spin-fluctuation model for the pairing interaction and argue that the order 
parameter of UPt, belongs to the E,, representation. Norman [19] considers a similar 
model but concludes that the order parameter belongs to the ID A,, (even parity) or the 
2D E,, (odd parity) representation. We assume that the order parameter belongs to one 
of the El  representations. The gap function for the 2~ states may then be written in terms 
of E, basis functions (see table 1 of [SI), 

for an even-parity state, and 

for an odd-parity state in the limit of strong spin-orbit coupling. In either case the gap 
function is then parametrised by the two-component order parameter r )  = (qx ,  qy) ,  
which transforms as a vector in the ab plane (with complex components) under the 
operations of the hexagonal point group. The invariance of the free-energy functional 
under the rotation group Dhh requires that the homogeneous Ginzburg-Landau (GL) 
free-energy functional is of the form [ 171, 

A(kFCF) = iOy[qxflkF) $- q y E ( k F > I  

A ( k F )  = i ayf f  * [ q x a ( k F )  + ~ , Y ~ ( ~ F ) I  

(3) 

(4) 

where a = ao( T - T,,), a. > 0, and T,, is the transition temperaturell. Stability requires 

t Of course the general form of the pairing interaction is an expansion in the full set of basis functions of the 
irreducible representations (see for example [9-111 where analogous expansions for cubic symmetry are 
introduced) of D6, 

lrrep 

V(kF, k ; )  = 2 v v v p ( k F ) P p ( k k ) .  
P 

Representations other than E,, (in the absence of the SBF) are unimportant in the GL region (see for example 
[12] for a discussion of this point for p- and f-wave representations in an isotropic system). The exception is if 
two representations are nearly degenerate. In the absence of a weakly broken symmetry, and an associated 
small energy scale, there is no compelling reason to assume that two or more representations are nearly 
degenerate. 
$ Most ofthe resultswe obtainare alsovalid for tetragonalsuperconductorswithanorderparameterbelonging 
to the 2D El representation. 
5 This assertion does not include the possibility of accidental degeneracy of order parameters belonging to 
different ID representations. Such a case is discussed by Wolfle and Kumar [18]. 
I /  For a tetragonal crystal an additional invariant exists, namely @3(1q,/4 + /qYl4). ForP2 > 0 and f13 > -2+p,, 
the analysis presented below is the same provided one makes the replacement PI + PI + t P 3  andp, + p2 + $p3. 
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that O1 > 0 and + p2  > 0, thus the stable homogeneous equilibrium phase is deter- 
mined by the sign of p 2 .  If p2 > 0 the states r) - (1, k i ) ,  which break time-reversal 
symmetry, are stable [17, 91. These are the equilibrium phases in weak-coupling BCS 
theory for the E, representation, where p2 = p1/2, independent of the shape of the 
Fermi surface or form of basis functions [16]. However, if p2 < 0 then an 'oriented' 
phase r )  - (0 , l )  or r )  - ( 1 , O )  is stablet. 

The leading-order coupling of the superconducting order parameter to a SBF is given 
in terms of a symmetric tensor E,,. The coupling energy density has the form 

Awsbf= r ) *  ' E . ?  (6) 
which is both gauge invariant and time-reversal invariant, but breaks rotational sym- 
metry in the ab plane for fixed E$.  The tensor E may be assumed traceless, since the 
trace of E_ may be absorbed intoihe definition 07 T,. Without loss of generality we can 
choose the tensor to be 

g = i" O ) .  
- 0 - E  

All other traceless, symmetric tensors correspond to a rotation in the ab plane with no 
change in the resulting thermodynamics of the phase transition. This coupling describes 
either a strain-field coupling to the order parameter or a direct coupling of the order 
parameter to the AFM staggered magnetisation, N,  of the form 

A O s b f -  (9")(r)")*. (8) 
Symmetry-breaking fields which explicitly break time-reversal symmetry are also poss- 
ible. For example, spin-exchange coupling of the triplet order parameter for the El, 
representation to an external magnetic field H or the spontaneous magnetisation, M ,  is 
described by a contribution of the form 

Amsbf - Im(r) x r ) * )  . M .  (9) 
A term of this foim gives rise to the A ,  phase of Cooper pairs with S, = - 1 in superfluid 
3He. However, we do not consider such a coupling here because the AFM order in UPt3 
is in the ab plane, in which case this coupling vanishes identically, and the effect of an 
external magnetic field H through such a coupling is dominated by the diamagnetic 
coupling of r )  to the field. 

The symmetry-breaking term in (6) is combined with ( 5 )  to give 

(10) 

where ax = a0( T - T c k ) ,  T,, = T,, i: &/aO. We further assume that the coupling to the 
SBF is weak, T,, + E/&,. Immediately below T,+, a, < 0 and a- > 0 implying that the 
(0 , l )  phase nucleates. At  Tc- the sign of a- changes, indicating that a second transition 
is possible. Below the temperature Tc- < Tc+, a phase with finite v x  is stable, and for 
T < Tc* the order parameter continuously evolves toward one of the states (1, ki) .  Note 
that time-reversal symmetry is again spontaneously broken, as in the solutions for 
E = 0, but in this case only at the second transition Tc. . Again there is a doubly degenerate 

t The apparent degeneracy of these states is lifted in sixth order. 
$ Of course if 17 and E,, are simultaneously rotated the free energy must be invariant 
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pair of order parameters. The second transition is the result of competition between the 
free energy of the SBF and the rotationally invariant quartic terms in the free energy; a 
finite value of q x ,  with a relative phase t i  with respect to the qy, diminishes the con- 
tribution from the term in the free energy with coefficient p2 (positive). Clearly if P2 < 0, 
then there is no advantage to a finite qx component and (0 , l )  is stable for all T < T,, in 
the GL regime. 

The order parameter may be written in the form (Aei6, B), where < is the relative 
phase between the real amplitudes A and B. The free-energy density becomes 

AQ/V = a - A 2  + a ,  B2 + (P1 + P 2 )  (A2 + B2)' - 4P2A2B2 sin2(c) (11) 

which for P2 > 0 favours a relative phase of c = +n/2. Furthermore, for a+ < 0 
(T  < Tc+) and a- > 0 ( T  > Tc-) the free energy is minimised by an order parameter with 
A = 0, 

The heat-capacity jump at the transition T,+ is given by 

a20 
2(Pl + P 2 ) '  

AC+ = T,, 

For a- < 0 the minimum-energy solution to the GL equations does not require A = 0. 
The instability of a second superconducting state is evident if we examine the coefficient 
of the quadratic term in A for T < Tc+, 

A Q / V =  i a + B 2  + [ a - (T)  + 2(P1 - P2)B2(T)]A2(T) + O(A4). (14) 

With B( T )  given by (12) the instability to an ordered phase with finite A( T) is determined 
by 

a-(T,*) + 2(p, - /32)B2(T,*) = 0 (15) 

which gives the transition temperature 

Note that the presence of the condensate with B # 0 suppresses (enhances) the tran- 
sition temperature to the ordered state with broken time-reversal symmetry for 
Pl/p2 > 1 (PI/p2 < 1). The ratio of the two physical transition temperatures is then 
given in terms of two dimensionless ratios of the parameters of the GL functional, 

The order parameter is easily calculated by minimising the GL functional with respect to 
bothA and B. 

+ I (18) { 
a+ - a- I 8P2 

B2 = - 
A 2 =  - { a+8;,a- - a+ - a- 

8/32 

for T <  T,,. The transition at Tc* is second order; A(T) vanishes continuously at Tc*, 
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B ( T )  is continuous, but the slope of B ( T )  is discontinuous at Tc*. The discontinuity in 
the heat capacity-relative to the heat capacity in the normal state-is 

AC* = Tc. a$/2p1 (19) 

AC*/AC+ = (TC*/K+) (1 + P 2 / P 1 ) .  (20) 

thus, the ratio of the heat capacity jumps at the upper and lower transition is 

The measurements of [l], which show a splitting of the heat capacity in two single 
crystals of UPt,, allow us to estimate the ratio p2/pl. From figure 1 of [l] we obtain 
p2/pl = 0.18 for sample 1 and p2/p1 = 0.12 for sample 2. These values should be 
compared with the weak-coupling prediction of p2/p1 = 0.5, indicating sizeable strong- 
coupling corrections to the weak-coupling free energy?. Note, however, that unlike the 
case of liquid 3He in which the strong-coupling corrections can stabilise a different 
superfluid phase than that predicted by the weak-coupling theory, the strong-coupling 
corrections inferred here do not imply an instability of the states with broken time- 
reversal symmetry. In fact it is important for the consistency of this theory that measure- 
ments imply p2/pl > 0. The two transition temperatures, combined with the value of 
p2/p1, also determine the coupling to the SBF, &/aO = 9.1 mK for sample 1 and &/aO = 
6.5 mK for sample 2. 

The existence of a transition to a second superconducting state in zero field has 
observable consequences for the mixed state of UPt,. In an applied magnetic field the 
order parameter is no longer uniform, so the free-energy analysis must include the 
contributions from gradients of the order parameter, 

If the magnetic field is applied in the xy plane, we can choose a gauge in which A is in 
the 2 direction and the GL equations for the components of q which are parallel and 
perpendicular to H decouple and become Schrodinger-like equations for harmonic 

t The strong-coupling corrections to the weak-coupling parameters are of order Sp, = (pJwc( T , / E , ) ~ T q p ~ 2 ,  
where (T,/E,) is the ratio of the superconducting energy scale to the characteristic energy scale in the normal 
Fermi liquid, and I TqPl2 is the dimensionless scattering amplitude for normal-state quasiparticles, which is of 
order 1 or larger. Assuming E, - 5 K, corresponding to the ‘coherence temperature’ in UPt,, we expect 
sizeable strong-coupling corrections. 
$ In the case of tetragonal symmetry, there is an independent additional invariant, namely 
rc5(1DZq,IZ + ID,qylz). The broken symmetry and kink features in the upper and lower critical field discussed 
below appear in the tetragonal case as well. The relevant expressions in this case may be obtained by the 
replacement rcIz3+ rcIz3+ rc5. 
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oscillators. The ground states of these harmonic oscillator equations determine Hc2. For 
fields HI19 the upper critical field is determined by the maximum of 

while for HI12 

rllb 

9ll.f. 

In the absence of any SBF, a+ = a-, and the order parameter orients with respect to the 
field so that the larger of the upper fields in (24) and (25) is always obtained; thus Hc2 is 
isotropic near Tc [20]. The orientation of the order parameter is fixed by the SBF for T 
sufficiently close to Tc+ (i.e. along the direction j?) ,  in which case Hc2 is given by the 
solutions with 9 I / $  in (24) and (25). The upper critical field varies from the solutionHI1.f 
to that for Hll j  with the rotation of H in the ab plane, and is therefore anisotropic. At a 
lower temperature, a second transition occurs in a finite field forHlly^ (H1l.f) and ~ 2 3  > 0 
( K ~ ~  < 0). If K~~ < 0 and HI12 then the solution for T close to Tc+ is with the 
corresponding value of H,, in (25). However, below a temperature TH < T,, the solution 
is 9 J1.f with a corresponding change in H,, from (25). Thus, the order parameter changes 
from 119 to 9 l1.f producing the kink in Hc2( T )  shown in figure 1. (Klemm et a1 [21] have 
previously predicted a kink in the upper critical field for the case of isotropic p-wave 
pairing with a uniaxial perturbation added to the pairing interaction.) The temperature 
of the transition from the ( I ,  0) phase to the (0, 1) phase along the Hc2 curve is 

T H  = ( T c  - c - Tc+ G I / ( -  - (26) 
This behaviour contrasts with that for Hll j  where the solution with the lowest free energy 
is 9 119 and Hc2 = -a+/= for all T < Tc+; in this case no kink appears in Hc2(T)  
(see figure 1). Note that a kink in H c 2 ( T )  will also occur if ~ 2 3  > 0; in this case the 
maximum discontinuity in the slope of Hc2( T )  occurs when the field is oriented along y^. 

Taillefer et a1 [22] have recently observed a kink in Hc2( T )  for a field in the ab plane. 
From the slopes of Hc2(T)  above and below the transition point TH we obtain two 
possible estimates of the stiffness coefficient, K ~ ~ / K ~  = -0.62(1.6). The upper critical 
field data of Shivaram et a1 1231 also shows a kink and gives similar values for the stiffness 
coefficients. Moreover, from (26), we obtain an independent estimate that the SBF 
coupling E/&" = 18 mK, which is somewhat larger than those obtained from the analysis 
of the specific heat measurements (on different UPt, crystals) in Lero field. 

The lower critical field also shows a signature of the zero-field phase transition due 
to the SBF. The lower critical field is determined by the line tension (energy per unit 
length), of a single vortex, 

H,, = ~ J C E , / ~ ~  (27) 
where q 0  is the flux quantum. For a type-I1 superconductor with a large field penetration 
length compared to the coherence length, as in UPt3, the line tension of a vortex is 
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T I T , ,  

Figure 1. H,,(T) versus T/T,  for fields in the basal plane. The kink in H,,(T) is shown for 
K , ~  < 0 andHIlf .  The order parameter changes from 17 - (0, 1) to 7 - (1,O) at TH. For 
the order parameter remains 17 - (0 , l )  and there is no kink in Hcz( T ) .  

determined partly by the change in the order parameter inside the vortex core, but 
largely by the superfluid kinetic energy outside of the core. This kinetic energy is 
proportional to the superfluid density tensor, ps, and is easily calculated by solving 
London's equation for a single vortex, 

where D is the direction of the applied field and xL are coordinates transverse to 0. The 
anisotropic penetration length tensor, A, is related to the superfluid density tensor by 

(A)2 = (m2c2/4ne2) (ps ) - ' .  

For the zero-field order parameter, either above or below Tc*, the superfluid density 
tensor is diagonal in the principal axes of the crystal: (ps) i j  = 2(2m/h)2(fi,)ij, with 

0, = ( I C ~ ~ ~ A ( T ) ~  + I C ~ B ( T ) ~ ) ~ Y  + ( K ' A ( T ) ~  + K ' ~ ~ B ( T ) ~ ) ~ ~  

+ K ~ ( A ( T ) *  + B(T)2) i2 .  (29) 

The anisotropy of the current in the xy plane is determined by the ratio R = (psxx/psyy) .  
As shown in figure 2, the anisotropy is large for Tc* < T < Tc+, but - ps becomes nearly 
cylindrical for T 4 Tc*, i.e. R = 1 - O ( E / ~  Tc*). 

- 
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t I 
i 

-I 
0 0.2 0.4 0.6 0.8 1.0 

TIT,+  

Figure2. The ratio of the components of the superfluid density tensor, psrx/psyy,  as a function 
oftemperatureforK23/K, = -0.62(1.6) andp,/p, = 0.18. At low temperature thesuperfluid 
density tensor is nearly isotropic in the basal plane. 

For a vortex oriented along a principal axis, fi, the solution to London's equation for 
the field is 

where (i, j ,  k )  label the orthogonal principal axes. The line tension in the London limit 
is given by the kinetic energy and field energy outside of the vortex core, 

EL = - I d2X,{h2 + (V x h) . (A)2 - - (V x h) }  - 8n n l > g  

which gives for the lower critical field along a principal axis to logarithmic accuracy, 

The temperature dependence of the lower critical field is determined by the penetration 
lengths transverse to the direction of the field, and since these functions reflect the 
dimensionality and anisotropy of the ground-state order parameter the lower critical 
field exhibits the phase transition induced by the SBF as shown in figure 3. The change in 
slope occurs at Tc*, and for h 1) i. is given by 

For ~ 2 3 / ~ 1  = -0.62(1.6) determined from the fit to the kink in Hc2(T), we find that the 
ratio HLl (T,. - S)/H;,(  T,. + S )  = 1.46. It is interesting to note that stability constraints 
(PI/@, > 0, K~ > 0 and ~ 1 2 3  > 0) on the bending and bulk coefficients of the free energy 
require that HAl( Tc* - 6)/HL, (T,. + 6) 5 1 through (33). Observation of this feature in 
the lower critical field, as well as the splitting of the heat-capacity jump and the kink in 
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0.80 0.85 0.90 0.95 

TI  T, ,  

Figure3. H,,(T)versus T/T,inunitsof (rpO/8xA:(T= 0)) forH(1twith theparametersused 
in figure 2. The labelled curves correspond to the values K~~ = 1.6 (A) and K?; = -0.62 (B). 
The broken lines are included to clearly show the kink that occurs at T,.. 

Hc2(T)  for fields in the ab plane in the same single crystal would be a strong test of this 
model for unconventional pairing in UPt3. 

We have shown that the coupling of a two-dimensional unconventional order par- 
ameter to a field that breaks the basal plane symmetry of a hexagonal crystal splits the 
transition from the normal to superconducting state, producing an additional transition 
between unconventional superconducting phases of different symmetry. Besides the 
appearance of two jumps in the specific heat at T,+ and Tc- < Tc+, there are further 
experimentally verifiable consequences. The rotational symmetry of the upper and 
lower critical fields is broken in the basal plane. The temperature-dependent upper 
critical fields for fields in the basal plane displays an abrupt change in slope, signalling a 
transition between two superconducting phases at finite field. The temperature of this 
transition is determined by the stiffness coefficients in the GI> free energy. The lower 
critical field will also display a kink for all field orientations at the temperature of the 
zero-field transition. From comparison with recent specific heat measurements on UPt,, 
we find p2/o1 = 0.15, suggesting large strong coupling corrections. The size of the 
coupling to the SBF is found to be &/ao - 7.8 mK, which is somewhat smaller than 
&/aO - 18 mK obtained from an upper critical field measurement which also yield 
estimates for the bending coefficients in the free energy. From these estimates, we 
predict that for fields along the c direction, the ratio of the lower critical field slopes at 
T = Tc* is -1.46. While these results are encouraging, the observation of all these 
features on the same sample would provide a convincing case for unconventional super- 
conductivity in UPt,. 
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